FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EN CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Em mecânica quântica, nível de energia ou nível energético é um estado quântico (de um elétron, átomo ou molécula, por exemplo) cuja energia está bem definida ao longo do tempo. Desse modo, os níveis energéticos são as funções próprias do operador hamiltoniano, e suas energias respectivas são seus valores.[1]
As diferentes espectroscopias estudam as transições entre os diferentes níveis de energia. A espectroscopia infravermelha, por exemplo, estuda transições entre os níveis energéticos da vibração molecular, a espectroscopia ultravioleta e visível estuda as transições eletrônicas e a espectroscopia Mössbauer se ocupa das transições nucleares.[2]
Na química e na física atômica, uma camada eletrônica, ou um nível de energia principal, pode ser pensado como uma órbita de elétrons girando ao redor do núcleo do átomo. A camada mais próxima do núcleo é chamada de "camada 1" (também chamada de "camada K"), seguida da" camada 2" (ou "camada L"), depois a "camada 3" (ou "camada M"), e assim por diante, conforme se afasta do núcleo. As camadas correspondem aos números quânticos principais (n = 1,2,3,4...) ou são nomeadas na ordem alfabética com letras usadas na rotação de raio-x (K, L, M,...).
Se a energia potencial é considerada zero a uma distância infinita do núcleo do átomo ou da molécula, convenção usual, então os respectivos estados eletrônicos possuem energia potencial negativa.
Se um átomo, íon ou molécula está no menor estado possível de energia, ele e seus elétrons são ditos no estado fundamental. Se ele está em um nível mais alto de energia, é dito excitado, ou quaisquer elétrons que possuem energia maior do que o estado fundamental estão excitados. Se mais de um estado mecânico quântico está com a mesma energia, os níveis de energia estão "degenerados". Eles são então chamados de níveis de energia degenerados.[3]
Explicação[editar | editar código-fonte]
Estados quantizados de energia resultam de uma relação entre a energia de uma partícula e o seu comprimento de onda. Para uma partícula confinada, como um elétron em um átomo, a função de onda tem a forma de ondas estacionárias. Apenas estados estacionários com energia correspondente a um número inteiro de comprimentos de onda podem existir; para outros estados as ondas interferem destrutivamente, resultando em probabilidade de densidade igual a zero. Exemplos elementares que mostram matematicamente como níveis de energia acontecem são a partícula em uma caixa e o oscilador harmônico quântico. O elétron é uma partícula subatômica fundamental que carrega uma carga elétrica negativa.[3]
História[editar | editar código-fonte]
A primeira evidência da quantização em átomos foi a observação de linhas espectrais na luz vinda do sol em cerca de 1800 por Joseph von Fraunhofer e William Hyde Wollaston. A noção de níveis de energia foi proposta em 1913 pelo físico dinamarquês Niels Bohr na Teoria de Bohr para o átomo. A teoria da mecânica quântica moderna, dando a explicação desses níveis de energia em termos da equação de Schrödinger, foi desenvolvida por Erwin Schrödinger e Werner Heisenberg em 1926.[3]
Transição de Níveis de Energia[editar | editar código-fonte]
Elétrons em átomos e moléculas podem trocar (fazer transição) de níveis de energia ao emitirem ou absorverem um fóton, ou radiação eletromagnética, tal energia deve ser exatamente igual à diferença energética entre os dois níveis. Elétrons podem também ser completamente removidos de uma espécie química, como um átomo, molécula, ou íon. A remoção completa de um elétron de um átomo pode ser uma forma de ionização, que é efetivamente mover o elétron para um orbital com um número quântico principal infinito, tão longe de forma a praticamente não ter efeito algum sobre o átomo remanescente (íon). Para vários tipos de átomos, existem a 1ª, 2ª, 3ª energia de ionização e assim por diante, que podem ser fornecidas ao átomo em estado fundamental para remover elétrons do menor ao maior nível de energia. Energia em quantidades opostas também pode ser liberada, muitas vezes em forma de energia fotoelétrica, quando elétrons entram em contato com ións positivamente carregados (ou átomos). Moléculas também podem passar por transições em seus níveis de energia vibracionais e rotacionais. A transição de nível de energia também pode ser não-radioativa, significando que não ocorre a emissão ou absorção de um fóton.
Se um átomo, íon ou molécula está no menor nível de energia possível, ele e seus elétrons são ditos em estado fundamental. Se estão no maior nível de energia, são ditos excitados, ou qualquer elétron possui uma energia maior que o estado fundamental está excitado. Tal espécie pode ser excitada a um nível de energia maior ao absorver um fóton cuja energia é igual a diferença de energia entre dois níveis. Por outro lado, uma espécie pode ir para um nível de energia inferior ao emitir espontaneamente um fóton com energia igual a diferença energética. A energia de um fóton é igual a constante de Plank (h) vezes a sua frequência (f) e, portanto, é proporcional a sua frequência, ou inversamente proporcional ao seu comprimento de onda (λ).
x
FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EN CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Um sistema em um estado estacionário, (ou regime permanente para a engenharia), tem numerosas propriedades que são inalteráveis no tempo. Isto implica que qualquer propriedade p do sistema, a derivada parcial em relação ao tempo é zero:[1][2]
- x
- FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EN CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x
+ FUNÇÃO TÉRMICA., + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Estado estacionário dinâmico
Antes de falarmos em Estado Estacionário Dinâmico precisamos compreender o significado do termo homeostase. Quando os fisiologistas falam em homeostase, eles estão se referindo à estabilidade do meio interno do corpo. Homeostase não significa equilíbrio, por isso, estabilidade é um termo mais apropriado.[1][2][3][4][5]Compartimentos líquidos do corpo[editar | editar código-fonte]
Nosso organismo possui dois compartimentos líquidos: plasma sanguíneo e o líquido intersticial (estes formam o LEC - líquido extracelular) e o líquido intracelular (LIC). Em um estado de homeostase a composição de ambos os compartimentos é relativamente estável. Se Compararmos os solutos em cada compartimento, notaremos diferentes concentrações no LEC e no LIC. Por causa desses gradientes de concentração diferentes, os compartimentos líquidos encontram-se em um estado de equilíbrio e dois estados de desequilíbrio.[1]A água é uma molécula que se move de modo relativamente livre entre os compartimentos do organismo gerando um equilíbrio osmótico. Ao mesmo tempo, entretanto, o fluxo de moléculas e íons entre os compartimentos líquidos do corpo ocorrem de forma desigual, acarretando dois estados de desequilíbrio: químico e elétrico. Tais desequilíbrios são de suma importância para a vida.[6][7]As diferenças de concentração do desequilíbrio químico são características dos organismos vivos e apenas a entrada contínua de energia mantém o corpo nesse estado. Por exemplo, os íons que escapam para fora da célula e os íons que escapam para dentro da célula retornam aos seus compartimentos originais pela ação, com uso de energia, da enzimaO corpo como um todo é eletricamente neutro, porém, o interior das células é ligeiramente negativo em relação ao líquido extracelular. Esse desequilíbrio iônico gera um estado de desequilíbrio elétrico, cuja alteração, cria os importantes sinais elétricos.O equilíbrio osmótico e os dois desequilíbrios são estados estacionários dinâmicos. O termo dinâmico indica que os materiais estão constantemente em movimento entre o LEC e o LIC. Já o termo estacionário indica que não há movimento resultante de materiais entre os compartimentos. Tanto o equilíbrio osmótico, quanto os desequilíbrios químico e elétrico são essenciais para os seres vivos. O objetivo da homeostase é manter os estados estacionários dinâmicos dos compartimentos do corpo.- x
- FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EN CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x
+ FUNÇÃO TÉRMICA., + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
. Quando as células morrem e não podem usar energia, elas obedecem à segunda lei da termodinâmica, retornando a um estado de desordem e a perda do desequilíbrio químico. - Na química, valência é um número que indica a capacidade que um átomo de um elemento tem de se combinar com outros átomos, capacidade essa que é medida pelo número de elétrons que um átomo pode dar, receber, ou compartilhar de forma a constituir uma ligação química. Isto está relacionado com o número de espaços omissos nas camadas eletrônicas do átomo. Os adjetivos que descrevem as valências atômicas usam prefixos gregos, como mono, bi, tri e tetra para as valências respectivamente iguais a 1, 2, 3, 4. Grupo dos elementos principais que são os metais geralmente possuem apenas uma valência, igual ao número de elétrons na camada de valência. Metais de transição freqüentemente possuem diversas valências (veja lista abaixo).[1][2]O termo valência não significa o mesmo que o termo número de oxidação. Para um símples composto iônico o número de oxidação de um metal será geralmente igual ao de valência, embora para compostos covalentes que envolvem não-metais haja frequentemente uma diferença.[3]
Lista[editar | editar código-fonte]
Lista de distribuição eletrônica comuns para os primeiros 103 elementos em ordem de número atômico:Número atômico Nome do elemento Distribuição eletrônica 1 Hidrogênio 1 2 Hélio 2 3 Lítio 4 Berílio 2 5 Boro 3 6 Carbono 2, 4 7 Nitrogênio 3, 5 8 Oxigênio 2, 6 9 Flúor 7 10 Neônio 0 11 Sódio 1 12 Magnésio 2 13 Alumínio 3 14 Silício 4 15 Fósforo 3, 5 16 Enxofre 2, 4, 6 17 Cloro 1, 3, 5, 7 18 Argônio 0 19 Potássio 1 20 Cálcio 2 21 Escândio 3 22 Titânio 3, 4 23 Vanádio 2, 3, 4, 5 24 Crômio 0, 2, 3, 6 25 Manganês 2, 3, 4, 6, 7 26 Ferro 0, 2, 3 27 Cobalto 2, 3 28 Níquel 0, 2, 3 29 Cobre 1, 2 30 Zinco 2 31 Gálio 2, 3 32 Germânio 4 33 Arsênio 3, 5 34 Selênio 2, 4, 6 35 Bromo 1, 3, 5, 7 36 Criptônio 0 37 Rubídio 1 38 Estrôncio 2 39 Ítrio 3 40 Zircônio 4 41 Nióbio 3, 5 42 Molibdênio 0, 2, 3, 4, 5, 6 43 Tecnécio 2, 3, 4, 6, 7 44 Rutênio 0, 3, 4, 6, 8 45 Ródio 3, 4 46 Paládio 0, 2, 4 47 Prata 1, 3 48 Cádmio 2 49 Índio 1, 3 50 Estanho 2, 4 51 Antimônio 3, 5 52 Telúrio 2, 4, 6 53 Iodo 1, 3, 5, 7 54 Xenônio 0 55 Césio 1 56 Bário 2 57 Lantânio 3 58 Cério 3, 4 59 Praseodímio 3 60 Neodímio 3 61 Promécio 3 62 Samário 2, 3 63 Európio 2, 3 64 Gadolínio 3 65 Térbio 3 66 Disprósio 3 67 Hólmio 3 68 Érbio 3 69 Túlio 2, 3 70 Itérbio 2, 3 71 Lutécio 3 72 Háfnio 4 73 Tantálio 3, 5 74 Tungstênio 0, 2, 4, 5, 6 75 Rênio 1, 4, 7 76 Ósmio 0, 2, 3, 4, 6, 8 77 Irídio 3, 4 78 Platina 0, 2, 4 79 Ouro 1, 3 80 Mercúrio 1, 2 81 Tálio 1, 3 82 Chumbo 2, 4 83 Bismuto 3, 5 84 Polônio 2, 3, 4 85 Astato 1, 3, 5, 7 86 Radônio 0 87 Frâncio 1 88 Rádio 2 89 Actinídio 3 90 Tório 4 91 Protactínio 4, 5 92 Urânio 3, 4, 5, 6 93 Netúnio 2, 3, 4, 5, 6 94 Plutônio 2, 3, 4, 5, 6 95 Amerício 2, 3, 4, 5, 6 96 Cúrio 2, 3, 4 97 Berquélio 2, 3, 4 98 Califórnio 2, 3, 4 99 Einstênio 2, 3 100 Férmio 2, 3 101 Mendelévio 2, 3 102 Nobélio 2, 3 103 Laurêncio 3 x
- FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EN CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.x
+ FUNÇÃO TÉRMICA., + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICAX
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Nenhum comentário:
Postar um comentário